Brute-forcing The Enigma Cipher

Patrick Collins - 1900609@uad.ac.uk
Introduction to security - CMP110A
BSc Ethical Hacking Year 1
2019/20

Abstract

This paper consists of explaining how the Enigma Cipher encrypts text and its major
flaw which can be brute forced using this flaw with the programming language Python.

The aim of this is to show how fast outdated ciphers are brute forced with even the
smallest amount of processing power, and how a flaw in a cipher can make it totally
useless.

To brute-force the Enigma Cipher a “Crib text” is used which is a decrypted part of the
whole ciphertext. A known word in an enigma ciphertext.

In the python script, it asks the user to input their plaintext and a section of this is used
as the “Crib Text”. To encrypt the crib text and the plaintext, the user inputs the
settings of the Enigma Machine.

Once the crib text is encrypted, a brute-force algorithm is run to find the settings used.
Finally, once the settings are found, an Enigma Machine is set up to decrypt the full
ciphertext.

After the investigator brute forced the Enigma Cipher, it's clear that with today’s
processing capabilities this cipher can be easily cracked faster than the bombe
machine used during WW2. This shows a great improvement in computing machines.

Contents

INEFOAUCTION. ...ttt ettt s b sttt b s bt st et et e b e e be e st et e s e s e sseeneentesaneennnenn 1
(2 FoTod (o [(o 10 o 1O USSP 1
Importance of this topiC iIN COMPULET SECUIILY......cc.ievuieeieeieeeeeceee ettt eteeae e e e e e 3
N o TSP SRRSUSRPRRR 3
ODBJECLIVES. ... ettt ettt et e ettt e e et e et e et e s st e s e e seessaessaastessseseassaessaassesssesssenssenseesnsseesnsseennns 3

PIOCERUUIE ... ettt ettt ettt ettt s bt e st et e et e s bt e st et et esbesbe e st eateenbeesabeenbeesnseensee 4
1= (U] o N 4
Coding the brute-fOrce attack.........ooo et e e e e e e e e e e e e e earaaeeeas 7
USEE INPUL.ceeeieeieeeeeeeieeeeeeeeccccirrrrereeeeeeeeeeeeeeeeeeesssseeassssssssssassseaaseaseseeesesessssssssssssssssssssasseeeeseeeeesneeesesssses 8
DECIYPEING USEE XL i iiiieeieiiiieetteeeeee e eeeeeeeeee e re e e e e e e eeeeeeeeeeeeeessassssssssasssasesseeseeeessssssrnnneeesssrses 9
Timing the brute-force attemMPL...ot e e e etre e e e e e tre e e e e s e nraeseenes 9

RESUIES....ceeeeeeeeee ettt ettt et et e st e e st e s ae e se e s e et e snteest e seesseensesnsasnsesnseesnsaesanseeeanseeenn 9
Entering text and enigmMa SEIINGS.cccivieeiereereee ettt et ete et e re e e s sessesssee s sseesnnseeeennns 9
Attempts Of DIrUtE-TOrCE AtLACK.........cccvieieeieeeeeeeee ettt re e a e s rae s sre e e eanneeas 9
ENIgMmMa SEINGS CrACKE.......ceeieeeeececeeeeeeeee ettt et et e e st e st be e baenaeesseeanesnraaans 10

DISCUSSION.....cctieieeieettetertee e e teete et e et et e et e et esat e s st e se st esntesstesssesseansesnsaentensseseansesnsaaesnssesasnsessnsseesnses 10
GENETAI DISCUSSION.ceotiriieiteitetententeeitet et ste st ettt s bt sae et et esbesbe e bt et et enbessesstentensensessesseentensensens 10
COUNTEIMEASUIES.....euteiiiteteiesteetteit ettt st e et te st e e bt s st et e b esbeebe e st e st e besbesseestestenbensaesabeesaesnseensseans 10
CONCIUSIONS. ...ttt ettt s e ettt e st et e s b e s st s st et e b e sse e st e st e tensesseeseestensesessesstesnseesnseenseanns 11
FULUIE WWOTK.... ottt ettt ettt ettt e bt et et e et e et e s st e se e s e enseentesstenseeseensesnsesnsessseesnseennns 11

REFEIENCES.eiieieeeetteeett ettt ettt et e e s bte e s sabte e sabte e ssbae e aseeesasaeesasbaessaseaessnsaeesnsaesssseaesssnssnns 12

F Y o] 01T o [Tod= T TSRS 13
ApPPENiX A: Brute-fOrCE SECLION......cccviciieeeeeeteee ettt et et e e re et e ebe e e baeessaeesnreeeanes 13
Appendix B: User input with maching Creation............cooeveeieeeereereeieeeeeeeeeee e 14
AppendiX C: TiMe CAICUIALION........c.eecvieieeieeeetereecte ettt e ste e te et e st e sse e seeseetessaesssaseesseennns 15
AppPendixX D: FINISNEA PrOZIram. ..ot eeeeeeeeeeerrrrerrreeeeeeeeeeeeeeseessssssssanneeeessrsssnnnnsenes 16

Appendix E: RUNNING the Programi........ ..ottt ee e e e e rre e e e e e aaae e e e e e snnnnan 19

Introduction
Background

A cipher is a method to either encrypt or decrypt information. The ciphertext is
unreadable without decrypting it first, as it is just a random set of letters or characters.
The Enigma Cipher is one method to encrypt information and is done using a machine.

The Enigma Machine was used during world war Il by the German military to encrypt
communications. How the Enigma machine encrypted its plaintext was to set the
machine to a certain position. It had multiple rotors, a plugboard, a reflector and a
typewriter-style keyboard to input the text. The number of rotors can be 3to 5. The
plugboard and reflector is how it reverses the letters, therefore, encrypting the text.

Refleotor Middle Current
| whoel antry
| | plates
} |
[1 A 1 Lamp B lights up
P o 2 sy D is pressed

g

(|

e L] w
F R L]
| |4 H
| |
Left Right Keyboard
hand hand and
whool wheel Lampboard

Letter reversing through the plugboard and reflector. Available at:
http.//www.ellsbury.com/gne/gne-002.htm [Accessed 7 May 2020]

Back then, the cipher seemed impossible to break. However, the help of Polish
cryptographers’ previous success on cracking the old models of the Enigma gave Alan
Turing’s team a head start. The determination of the code breakers at Bletchley Park
cracked this cipher and exposed the flaw with the Enigma Cipher (Available at:
https://medium.com/lessons-from-history/how-allied-forces-cracked-enigma-code-
6f67d3edb65c [Accessed 7 May 2020]).

One of its flaws is that knowing a part of the ciphertext can make it vulnerable to brute-
force attacks, which is what the bombe machine did (Available at:
hitps://www.cryptomuseum.com/crypto/bombe/ [Accessed 7 May 2020]). For example,
the daily weather reports always started with “Weather” (German: “Wetter”) making it
easier to crack. The same concept can be used for this project, using a part of the
decrypted ciphertext to reveal the full ciphertext.

1|Page

https://www.cryptomuseum.com/crypto/bombe/
https://medium.com/lessons-from-history/how-allied-forces-cracked-enigma-code-6f67d3edb65c
https://medium.com/lessons-from-history/how-allied-forces-cracked-enigma-code-6f67d3edb65c
http://www.ellsbury.com/gne/gne-002.htm

D

Bombe machine, By Unknown author - Set of wartime photos of GC&CS at Bletchley
Park, Public Domain, htips://commons.wikimedia.org/w/index.php?curid=72819587
[Accessed 7 May 2020]

It took around 20 minutes for each Rotor Setting (Alexander ¢ 1945, ch 1 para 44.
Available at: http://www.ellsbury.com/gne/gne-012.htm [Accessed 7 May 2020]) . However,
Alan’s team needed to get the state of Enigma machine before it got changed the next
day which made every minute count. This project aims to get through a Rotor in much
less time to show the speed of today’s processors, even a low-priced one.

BCM2837

Raspberry Pi 3 Model B Processor

Available at: http://www.datasheetcafe.com/bcm2837-datasheet-quad-core-processor-
broadcom/ [Accessed May 7, 2020]

2|Page

http://www.datasheetcafe.com/bcm2837-datasheet-quad-core-processor-broadcom/
http://www.datasheetcafe.com/bcm2837-datasheet-quad-core-processor-broadcom/
http://www.ellsbury.com/gne/gne-012.htm
https://commons.wikimedia.org/w/index.php?curid=72819587

Importance of this topic in Computer Security

Data needs to be protected. Privacy is important, especially in the ever-growing
and advancing cyber world. Cybercriminals can use this information to make
money, selling it off. This is one reason why Encryption is a very important
topic in Computer Security, as it is the forefront of data privacy and security.

Encryption protects the user’s information, and there are various methods to do
so. From the Enigma Cipher to the Advanced Encryption Standard (AES) we
use today, ways to secure information is improving. The issue is, how long will
it take to “crack” the encryption, therefore making it obsolete, and a new
method is needed?

Aim

The aims of this project will be:

e To replicate what the bombe device did, brute-forcing the enigma cipher,
in modern-day programming languages.

e Attempt to show how far computers have come with the technology
used in this project to brute-force the Enigma.

¢ Reducing the average time of 20 minutes for each Rotor.

e Letting the user encrypt their plaintext, then attempt to brute-force it and
display the decrypted message to the user.

Objectives

e Attempt to code an enigma machine or use an existing Enigma library.
e Use a cheap device, but with reasonable computing power.

e Speeding up the process depends on the hardware, and how well the brute-force

attack functions.

e In the code a user input could be requested, this will store the plaintext. This

plaintext will be passed into whatever method of the enigma machine.

3|Page

Procedure
Setup

Hardware

For meeting the objective of reasonable and cheap computing power, a Raspberry Pi 3
Model B is used. This hardware costs around £35 (Raspberry Pi Foundation approved
retailer, https://thepihut.com/products/raspberry-pi-3-model-b?src=raspberrypi. See figure 1).
This will show one part of advancement in technology, as the Bombe was a large
machine whereas a Raspberry Pi is the size of a palm.

Figure 1: Raspberry Pi 3 Model B

Accompanying the Pi, a micro SD card is needed. This is needed for the raspberry pi's
operating system.

Software

A Python 3 Enigma library is used to recreate the Enigma Machine in code, meeting
one of the outlined objectives. (Author: Brian Neal, https://pypi.org/project/py-enigma/
See figure 2). This great resource is very helpful in simulating the enigma machine to
brute-force it. Therefore, the programming language to be used is python 3. Installing
this library will come later.

4|Page

https://pypi.org/project/py-enigma/
https://thepihut.com/products/raspberry-pi-3-model-b?src=raspberrypi

U Search projects Q Help Sponsor Login Register

py-enigma 0.1 P P

pip install py-enigma B Released: Jun 6,2012

A historically accurate Enigma machine simulation library.

Navigation Project description

= Project description . R . . .) .
Ahistorically accurate Enigma Machine library written in Python 3

D Release history

Author: Brian Neal <bgneal@gmail.com &8>
& Download files

Version: 0.1

Date: June5,2012

Proiect links
Figure 2: Py-enigma library

On the Raspberry Pi, the Raspbian operating system is to be used. To image the
Raspbian OS to your SD card, simply use the Foundations own Raspberry Pi imager
(Available at: https://www.raspberrypi.org/downloads/ Figure 3) Select and download the
imager. Once it is downloaded, run the application and install the imager (See figure 4).

In the imager itself, selecting “Choose OS” will show the Raspbian OS (See figure 5&6).
Setup is almost complete, now insert the SD card into the raspberry pi and boot it up.
Once booted up, open the terminal to install the final software.

Downloads

Raspbian is our official operating system for all models of the Raspberry Pi
Use Raspberry Pi Imager for an easy way to install Raspbian and other operating
systems to an SD card ready to use with your Raspberry Pi:

— Raspberry Pi Imager for Windows

— Raspberry Pi Imager for mac0S

— Raspberry Pi Imager for Ubuntu

Figure 3: Raspberry Pi imager download link

5|Page

https://www.raspberrypi.org/downloads/

o' Raspberry Pi Imager i *

Welcome to Raspberry Pi Imager
Setup

Setup will guide you through the installation of Raspberry Pi
Imager.

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Install to start the installation.

Figure 4: Raspberry Pi imager setup menu

s Raspberry Pi Imager v1.2 - X

Operating System X

< Back

Go back to main menu

Raspbian Lite
i A port of Debian with no desktop environment

Raspbian Full
A port of Debian with desktop and recommended applications

Figure 5: Raspbian OS in menu

6|Page

‘- Raspberry Pi Imager v1.2 — bt

Raspberry Pi

Operating System SD Card

RASPBIAN FULL CHOOSE SD CARD

Figure 6: Raspberry Pi Imager

Installing Py-Enigma is very simple from the command line. The command “pip install
py-enigma” (See figure 7) will install the python library and enable its use in python
programs.

File Edit Tabs Help
pi@raspberrypi: pip install py-enigmal]

Figure 7: Installing py-enigma

Coding the brute-force attack

To code this part of the program, a tutorial by GCHO and The Raspberry Pi Foundation
(Tutorial available at: https://projects.raspberrypi.org/en/projects/octapi-brute-force-enigma/7) is
used for the brute-forcing the enigma.

In Appendix A, it shows a finished brute-force attack coded using the tutorial and py-
enigma. You create the enigma machine by including the py-enigma class and creating
the machine (See figure 8).

7|Page

https://projects.raspberrypi.org/en/projects/octapi-brute-force-enigma/7
https://www.raspberrypi.org/
https://www.gchq.gov.uk/

Set up the Enigma machine
machine = EnigmaMachine.from_key_ sheet(
rotors= rotor_choice,
reflector="E",
ring_settings="1 1 1",
plugboard_settings="AV BS CG DL FU HZ IN KM OW RX")

Figure 8: Machine creation

For the moment the Reflector is default to B, as is the ring and plugboard settings. What
this section does (See Appendix A) is selects a rotor (From the possible rotor list), start
position (Using the alphabet and 3 for loops) and then sets the enigma machine to this
setting using “machine.set_display(start_position)”.

Furthermore, it attempts to decrypt the crib’s ciphertext. If the decrypted crib ciphertext
is the same as the cribtext plaintext then the correct setting is found which returns the
settings for the user. After the brute-force attack has been coded, the next
objectives/aims are to be focused on.

User input

However, only part of this project’s aims will have been met so far. One of its aims is to
let the user choose what to encrypt, with the settings they desire. To do this, input
statements are needed. The user inputs their plaintext and then the Enigma Settings to
encrypt it (See figure 9). However, to encrypt what the user has entered a new enigma
machine needs to be created with these settings. The settings that the user chooses will
be the brute-force attack’s goal to find. (Also see appendix B for more information).

bruteforce_standalone.p..e_standalone.py (3.7.3) v A X
File Edit Format Run Options Window Help

I3

hBrute forcing the enigma ciphertext

import time

print('Example Plaintext > THISXISXANXEXAMPLE')

print('Please Enter The Plaintext You Would Like To Brute-Force: ')
usertext = input()

cribtext = usertext[0:len(usertext),//2]

print("This is the cribtext: ", cribtext)

print("Example Start Position > SCC")

startpos = input('Please Enter The Start Position Of The Enigma Machine: ')
print("Example Rotor > I II IV")

userRotors = input('Please Enter The Rotors Of The Enigma Machine: ')

##Encrypt the usertext

Trom enigma.machine import EnigmaMachine
machine = EnigmaMachine.from_key_sheet(
rotors= userRotors,
reflector="E",
ring_settings="1 1 1",
plugboard_settings="AV BS CG DL FU HZ IN KM OW RX'")

machine.set_display(startpos)

ciphertext = machine.process_text(usertext)
print({ciphertext)

cribCiphertext =ciphertext[0:len({ciphertext)//2]
print({cribCiphertext)

start = time.time()

Figure 9: User Input and machine creation

8|Page

Decrypting user text
With the settings found after the brute-force attempt, it's now possible to decrypt the full
message that the user entered.

To decrypt the full message, the state of the enigma machine needs to be set to the
valid settings found. Once the state has been set to the correct position the full
message will be decrypted and displayed to the user. (See Appendix D, figure 3).

After the full message has been decrypted the brute-force attack has been successful.
Now it’s just timing how long the attack takes.

Timing the brute-force attempt

To time the brute-force attempt, time.time() can be used. You will see this in Figure 9
with “start = time.time()”. After the user’s plaintext is encrypted the brute-force attempt
begins, which is why the time must start here. Once the settings are found, the time
stops with “end = time.time()”.

Converting the time to minutes is done by subtracting the two and then dividing by 60
(See figure 10 for the calculation). This will give an accurate and understandable
timestamp of how long the program took to brute-force their enigma settings.

I minutes = end-start

print ("It took", minutes/68, " minutes to brute force the ciphertext") ‘ ‘I

Figure 10: calculation of seconds to minutes.
Results

The program is complete, now it's time to run it. Running the program, the user decided
to choose a rotor position not too far down the list of possible rotors. You should do the
same for testing. For example, I Il Il

Entering text and enigma settings

The user entered “THEXALLIESXAREXADVANCING” and got correctly split into a
Cribtext displaying it to the user. Next, a Start Position “WRZ” is entered with Rotor
Position “I Il IV” which is the second possible rotor in the list. (See Appendix E, figure 1).

Attempts of brute-force attack

Letting the program run and attempt to crack the settings entered, the lines got up to the
2000s. Meaning this is 2000 attempts so far of the one Rotor Position and multiple Start
Positions. (See Appendix E, figure 2).

9|Page

Enigma settings cracked

Once ended, the program had an incredible 32,937 attempts. This is just the second
Rotor in the list. Time calculation also worked showing it took 7 minutes for the two
Rotors. Finally, the full text that the user entered at the beginning is successfully
decrypted. This result can be seen in Appendix E, figure 3.

Discussion
General Discussion

The most significant result of this project is the time of the brute-force attack. Back with
Turing’s bombe it took 20 minutes for each rotor. In the example shown in Appendix E,
2 rotors had to be checked before the settings were found. In WW2 this would have
taken around 40 minutes.

However, with the speed of today’s single processor, it took 7 minutes. Significant time
reduction. Also, keep in mind this is also done on the miniature raspberry pi in
comparison to the size of the bombe used in WW2. This meets two of the aims,
showing the advancement in technology and reducing time of the brute-force attack on
the enigma cipher. The Raspberry Pi minicomputer can do what the bombe did, but
better and faster despite being smaller.

After the investigator successfully run the brute-force attack, another project aim is met.
Replicating what the bombe device did seemed like a big task for this project, and the
steps needed to take not so clear. Now, the program successfully imitates what the
bombe device did. Also, with the help of py-enigma it has been possible to do it on a
modern-day programming language.

Finally, an important aim to have user interaction is achieved. The user can
enter any plaintext they want. Even further, the user can set some settings of
the enigma machine to their liking, which was out of this aim’s scope, improving
the aim further.

Countermeasures

To counter the flaw of the enigma cipher, the TypeX was used by the British. This
meant the methods used to brute-force the enigma cipher cannot be used on this
improved machine. It fixed the flaws of the enigma making it a more secure
communication method. (Available at: https://www.cryptomuseum.com/crypto/uk/typex/
[Accessed May 8, 2020)

10| Page

https://www.cryptomuseum.com/crypto/uk/typex/

Conclusions

In conclusion, all of the project aims have been achieved. Some aims taking the project
beyond expectation. This project is a good insight into cryptography and brute-forcing
ciphers. Finally, a great experience to see how far computers have evolved since WW2
with the help of Alan Turing and his proposition of “Turing Machine”(Available at:
http://www.turingarchive.org/viewer/?id=466&title=01d [Accessed May 8, 2020]).

Future Work

If the project had more time and resources, a bigger scope could be achieved. Such as
an addition to the brute-force section for the Reflector, Plugboard and Ring Settings.
This would allow the user to fully enter the settings of the enigma machine to their liking.

However, doing so would increase the time significantly. To combat this, 8 raspberry
pi’'s would be needed. Just as more bombe machines needed to be created to decrypt
faster.

11| Page

http://www.turingarchive.org/viewer/?id=466&title=01d

References

(n.d.). Retrieved May 7, 2020, from https://www.cryptomuseum.com/crypto/bombe/

(n.d.). Retrieved May 7, 2020, from https://medium.com/lessons-from-history/how-allied-forces-
cracked-enigma-code-6f67d3edb65c

¢, A. (n.d.). Reflector drawing. Retrieved May 7, 2020, from http://www.ellsbury.com/gne/gne-002.htm

¢, A. (n.d.). Time For One Rotor. Retrieved May 7, 2020, from http://www.ellsbury.com/gne/gne-
012.htm

GCHQ, R. P. (22, November 2017). Enigma Brute Force Tutorial. Retrieved May 7, 2020, from
https://projects.raspberrypi.org/en/projects/octapi-brute-force-enigma/7

Image Of Bombe Machine. (n.d.). Retrieved May 7, 2020, from
https://commons.wikimedia.org/w/index.php?curid=72819587

Lycett, A. (n.d.). Retrieved May 5, 2020, from
http://www.bbc.co.uk/history/worldwars/wwtwo/enigma_01.shtml

Raspberry Pi 3. (n.d.). Retrieved May 7, 2020, from https://thepihut.com/products/raspberry-pi-3-
model-b?src=raspberrypi

Raspberry Pi 3 Model B Processor. (n.d.). Retrieved May 7, 2020, from
http://www.datasheetcafe.com/bcm2837-datasheet-quad-core-processor-broadcom/

Raspberry Pi Imager . (n.d.). Retrieved May 8, 2020, from https://www.raspberrypi.org/downloads/

Turing, A. M. (n.d.). Turing Machine. Retrieved May 8, 2020, from
http://www.turingarchive.org/viewer/?id=466&title=01d

TypeX. (n.d.). Retrieved May 8, 2020, from https://www.cryptomuseum.com/crypto/uk/typex/

12| Page

Appendices
Appendix A:

Brute-force section

*bruteforce_standa..ndalone.py (3.7.3,

File Edit Format Run Options Window Help

#List of possible rotor start positions

roters = ["I IT 111", "I IT IV", "I II V", "I III II",
"I 111 1V", "I IIT V", "I IV II", "I IV IIT",

"I IV v', "I v I1II", "I V III", "I V IV",

"I 1 111", "I I 1IV", "II I ¥", "II III I",

"I1 111 ivv", "I1Tr III v+, "II 1Iv 1", "II IV III",
"I1 IV V', "IT v I", "II Vv III", "II V IV",

"IIr 1 11", "III T 1V", "III I V", "III IT I",
"IIr 11 v, "Iir ir v+, "III 1v 1", "III IV II",
"IIT IV v", "IV I 11", "IV I III", "IV I V",

"Iv 11 1", "IV IT III", "IV I V", "IV II I",

"Iv 11 111", "IV II V', "IV III I", "IV III II",
"IV III v, "IV v I", "IV Vv II", "IV V III",

"v 111", "V¥ I IT1I", "V I IV", "V II I",

" 11 111", "V¥ I I1IV", "V III 1", "V III ITI",

"W IIT Iv", "V IV I", "V IV II", "V IV III"]

#Function for finding start position
def find_rotor_start(rotor_choice, ciphertext, cribtext):
Trom enigma.machine import EmigmaMachine

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Set up the Enigma machine
machine = EnigmaMachine.from_key_sheet(
rotors= rotor_choice,
reflector="E",
ring_settings="1 1 1",
plugboard_settings="AV BS CG DL FU HZ IN KM OW RX'}

#Do a search over all possible starting positions
for rotorl in alphabet:
for rotor2 in alphabet:
Tor rotor3 in alphabet:

#Generate a possible rotor start position
start_position = rotorl + rotor2 + rotor3

#Set the starting position
machine.set_display(start_position)

#Attempt to decrypt the plaintext
plaintext = machine.process_text(cribCiphertext)
print(plaintext)

#Check if decrypted version is the same as crib text
1T plaintext == cribtext:
return rotor_choice, start_position

#IT unsuccessful in decrypting message
return roter_choice, "Cannot find settings"

¥

#Calling the function —
Tor rotor_setting in rotors:
rotor_choice, start_position = find_rotor_start(rotor_setting, ci
if start_position != "Cannot find settings":
break kdl
Ln: 1 Col: 0

13| Page

Appendix B: User input with machine creation

bruteforce_standalone.p..e_standalonepy (3.7.3) v A X

File Edit Format Run Options Window Help

FBrute forcing the enigma ciphertext

import time

print('Example Plaintext » THISXISXANXEXAMPLE')

print('Please Enter The Plaintext You Would Like To Brute-Force: ')
usertext = input()

cribtext = usertext[0:len{usertext)//2]

print("This is the cribtext: ", cribtext)

print("Example Start Position > SCC")

startpos = input('Please Enter The Start Position Of The Enigma Machine: ')
print("Example Rotor > I II IV")

userRotors = input('Please Enter The Rotors Of The Enigma Machine: ')

#HEncrypt the usertext

from enigma.machine import EnigmaMachine
machine = EnigmaMachine.from_key_sheet(
rotors= userRotors,
reflector="E",
ring_settings="1 1 1",
plugboard_settings="AV BS CG DL FU HZ IN KM OW RX')

machine.set_display(startpos)

ciphertext = machine.process_text{usertext)
print{ciphertext)

cribCiphertext =ciphertext[@:len(ciphertext)//2]
print{cribCiphertext)

start = time.time()

#lList of possible rotor start positions

rotors = ["I II III"; "I II Iv™,; "I II W™, "I III 11",
SE IIE.IN"; "I I3 ¥"; "I IN IE3"; "1 OV IEL™;

L COIN WT; LN IXT; YDIOW LIILT; "I W IV

REE I.DTE"; "EI X Tw"; "TEE I M"; TIE IXL E™:

REE LRI IVT®; TII ILE N7; "LI1 IV I7; TILR IV LEL%;
FLEI. IV VT, TLIEI W I™; TIE W IIE™; "I1 ¥ IV";

DEEL ¥ -FI?; TEEY T EMT; TERE ¥ NT; TIRL. MO -IT;
PELL EL TW®; TIIX BL N7 PRLIL- DN L% TLLIL IV LT
TEEI IW ¥*; "IN I II"; "#w I IIL", "IN I W7;

DIN IE IT; "IN IX IE1Y; TOIN O %7 %O IE AT

mIN I III®; "IV LI %"; "IN IIE 17; ™IV 111 I17;

£

Ln:1 Col: D

Figure 1: User’s text is split into 2 for the cribtext. Seen by “usertext[0:len(usertext)//2]".
This will be used for the brute-force attack.

14| Page

Appendix C: Time calculation

Brute forcing the enigma ciphertext
L time

Figure 1: Importing time to use the time.time() function in order to begin calculating
length of attack.

start = time.time()
#List of possible rotor start positions
rotors = "L I1 LEIT; "I II IvN"; "I II Y"; "L BIL 11"
ny TTT T n nT TTT yn ny T TT" ny TV TTTn
R e v e e ¥ e e AR i i A
ny T n nT TN nTy TTT" ny T 11}
= = = = ¥ i = r
nyT T TT n n T T I RTAL n T T n nyT TTT Tn
= e SN R R = ¥ L= r T W |
nyT TTT T n nyT TTT n nyvT T TN nyT T TTT"
= ARk, | E. oS SRS r = S | s A
nyT T n nyT TN nyvY TTT" nyT T n

= = = = S = v
nyITTv T T n n TT T T n n TT T 11} nyYT7T TT Tn
e R ¥ T E v i |
"TTT TT TWwn "TTT TT Wn nTTT TV T "TTT TV TV
LIT LI IN®; "ILII Tl ™o TIIY- TV LY TILL: IV BLT
NTTT TV W nTyY T TT" nyTyY T TTII™ Ny T yn
EIT L% Y% "I% & II%; "W 1 -I11%; "IV I Y7;
nyy ITT T" nTY TT TTT n nyy T yn nTy TT T"
IV IL I™; "I¥ EI IIL BN I NT RIN TTOLT
T TT TTT " nTy TT N "ty TTIT I "TY TTT TT n
¥ 11 131, i¥ 414 ¥ , 1¥ 111 1, ¥ L1141 11, kdl

Ln: 1 Col: 0

Figure 2: Start of time counter- after user input and machine creation finished

#Calling the function

rotor_setting rotors:
rotor_choice, start_position = find_rotor_start(rotor_setting, ciphertext, c
start_position !'= "Cannot find settings'":

end= time.time()
minutes = end-start
print{"It took", minutes/68, " minutes to brute force the ciphertext")

o 4]

Ln: 1 Col:

Figure 3: End of time counter- once attack has found valid settings counting the time
stops. Then a calculation converts the time from seconds to minutes.

15| Page

Appendix D: Finished program

bruteforce_standalone.p..e_standalone.py (3.7.3) v A X

File Edit Format Run Options Window Help

|»

HBrute forcing the enigma ciphertext

import time

print('Example Plaintext > THISXISXANXEXAMPLE')

print{'Please Enter The Plaintext You Would Like To Brute-Force: ')
usertext = input()

cribtext = usertext[B®:len(usertext)//2]

print{"This is the cribtext: ", cribtext)

print{"Example Start Position > SCC")

startpos = input('Please Enter The Start Position Of The Enigma Machine: ')
print({"Example Rotor = I II IV")

userRotors = input('Please Enter The Rotors Of The Enigma Machine: ')

##Encrypt the usertext

from enigma.machine import EnigmaMachine
machine = EnigmaMachine.from_key_sheet(
rotors= userRotors,
reflector="E",
ring_settings="1 1 1",
plugboard_settings="AV BS CG DL FU HZ IN KM OW RX')

machine.set_display(startpos)

ciphertext = machlne.process_text{usertext)
print{ciphertext)

cribCiphertext =ciphertext[0:len(ciphertext)// 2]
print{cribCiphertext)

start = time.time()

#List of possible rotor start positions

rotors = [*I II III",; "I II Iv", "I II ¥"; "I FII I1*,
®*L ITL.IV", "L ILIL W", "I IV II®, "I IV IL1",

RE IV VR SN CIRT: LW DILIT; LM IV

"EE I.@IXY; "03 I -9%"; "8I I ¥W"; "I3 111 @™

PIT ITT Iw"; "IT I3l ¥°; "II IV I¥; "IT IV JIITIY;
II IV VT "IT W I™; "II'VY IXII"; "ILI ¥ IN";

RIIT I II™,; "IJT I Iw"; "II I N"; "III X1 1",
®IEIL II TW®, "II1I II W", "I11 IV 1%, "ILI IV L1%;
RETL IV W, 2IN T II7; *8W I BI1Y%; 2IW I W%,

"IV IL I"; "i¥ ITI 1I1%; 7O I W™ POV I1 1%

"IV II III"; "IV I1 ¥, "IV III I"; "IV III II",

£l

Ln:1 Col: 0

Figure 1: User input section of the program

16 |Page

bruteforce_standalone p..e_standalone.py (3.7.3) v A X
File Edit Format Run Options Window Help ‘I
|

print(cribCiphertext)
start = time.time()

#List of possible rotor start positions

rotors:= [.71 IT TIT™; "1 I1I IW7.; "I 11 W7 21 ITI1 IIY;
ol FIL WY NI ITX VT TE OINCITV. N1 W TILT;

oL v wTe SEOWCLIT TECW XTI WL I

oIl I IT17. UL T IMT: 2L I °N%; TIL ILT 1'%

oLl L1L IVT: TIT EIL WY WIT IW LM UEL I LLI™
OIT INCNT TIT WD BET M OTITY:: TIT N T

SI1T 1 117 TIII I IVY. BIIT 1 W% DILIL IT I
oLlIl 11 IVT: TILTL IT WZ: TITL IM L™ TLILII IV I1Y;
B TIIT Iw W UIW T OTI™: TINT TIT™: TIN I WD

oiw 11 I "IN IL I11%. "I L'WY "IW 1T 1M

. T O O e) P T T e T 0) R T T T T
oIV III WU TINCW IV TINCW ITT: TINGW IITT:

el T TN TETY: WL ENT: YW LD 1T

e IT ELLT.C TARGRL LN TN OTEL - TRRGTLT LT

W TTL ENT TREIM IV TRRCINE LT TR EWCLIILT]

#Function for finding start position
def find_rotor_start{rotor_choice, ciphertext, cribtext):
from enigma.machine import EmigmaMachine

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Set up the Enigma machine
machine = EnigmaMachine.from_key_ sheet(
rotors= rotor_choice,
reflector="E",
ring_settings="1 1 1",
plugboard_settings="AV BS CG DL FU HZ IN KM OW RX')

#Do a search over all possible starting positions
Tor rotorl in alphabet:
for rotor2 in alphabet:
for rotor3 in alphabet:

#Generate a possible rotor start position
start_position = rotorl + rotor2 + rotor3

[l

Ln:1 Col: 0

Figure 2: brute-force section of the program

17 |Page

bruteforce_standalone.p..e_standalone.py (3.7.3) v A~ X

File Edit Format Run Options Window Help ‘I
=

start_position = rotorl + rotor2 + rotor3

#5et the starting position
machine.set_display(start_position)

#Attempt to decrypt the plaintext

plaintext = machine.process_text{cribCiphertext)
print{plaintext)

#Check if decrypted wversion is the same as crib text

17 plaintext == cribtext:
##Decrypt Tull text
#5et the initial position of the Enigma rotors after knowing
machine.set_display(start_position)
#Decrypting the ciphertext
print("Valid settings found")
print ("Rotor Choice: ", rotor_choice, " ", "Start Posit
print{"Attempting To Decrypt Full Ciphertext...")
Fullplaintext = machine.process_text({ciphertext)
print{Fullplaintext)
return rotor_choice, start_position

#IT unsuccessful in decrypting message
return rotor_choice, "Cannot find settings"

#Calling the function
Tor rotor_setting in rotors:
rotor_choice, start_position = find_rotor_start({rotor_setting, ciphertext, c
it start_position '= "Cannot Tind settings":
end= time.time()
minutes = end-start

print("It took", minutes/68, " minutes to brute Torce the ciphertext")
break

4]

Ln:1 Col: 0

Figure 3: Paying attention to “checking if decrypted version is the same as the crib text”,
the enigma machine state is set to the valid settings found. Then the full ciphertext that
the user entered is decrypted displaying it in plaintext.

18 |Page

Appendix E: Running the program

File Edit Shell Debug Options Window Help

Python 3.7.3 (default, Dec 20 2019, 18:57:59)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license()" for more information.
sm

============= RESTART: /home/pi/Desktop/bruteforce_standalone.py =============
Example Plaintext > THISXISXANXEXAMFLE

Please Enter The Plaintext You Would Like To Brute-Force:
THEXALLIESXAREXADVANCING

This is the cribtext: THEXALLIESXA

Example Start Position > SCC

Please Enter The Start Position Of The Enigma Machine: WRZ

Example Rotor = I II IV

Please Enter The Rotors Of The Enigma Machine: I II IV

Figure 1: User entering text to encrypt and choosing settings of the enigma machine

19| Page

Ln: 13 Col:54

|¥

File Edit Shell

Python 3.7.3 Shell

Debug Options Window Help

MUMUSKBOGKBT
TRLD JWEWKOHF
BDMVMVRBOMIP
UGQGGBEPMZYT
DHPYEQRCZMWP
VOMYHSBLMSAH
GPSREWXNSTTW
YGOYOYOVTIOA
YKXQTXYRIEUS
ROPGBINGEEIW
YMETGXPNEWAH
QZILSFJILWSZN
GMQMAIDXSBZZ
TSEXAZNVEKKW
LTDGBTUUKWAH
MIXYOBKTWPDH
XEKKIYDGPSER
GEVZJERFSOMA
YWXXYUSVOHYA
KSTWEVTZHZEL
XCZSXXIJIRDUN
TQOGBUXIDGWI
YMCMZBQZGHUQ
SEEMNXORHOXT
YSDVBIMIXMVQ
XOSTJIOWMMQXT
XHJYBDDPQJOU
VZGKUOIAJCPB
TUIKCSLNCEVY
YDEZLDHAEQRY
KCLJXZJOQLCC
KXUUIRAULUSO
ZMIFPQEEUKHL
JQEZMOZOKBER
UJELWWPQBZAB
FCBIQFEMZJYB
ZERIBRTAJRFY
LQPDPLNCRDUT
ILTIWKMMDCYB
TUGQCDNJCEZA

[k

-

Ln: 2563 Col: 12

Figure 2: The attempts to decrypt the Cribs Ciphertext and find valid settings

20| Page

Python 3.7.3 Shell

File Edit Shell Debug Options Window Help

XZIDOXOTBATJ
CXSUCURTALFN
ZCBNJGZMLRYG
DKBVFWTIRGOV
UEEZGRCEGDSC
NHOCPOQBDXMK
VIPUBADTXDAK
ZBZIVTBQDZAD
VCCJIYEAHSTUE
IKEQSKYVTTCR
XDMJYLNCTIVF
JUILZCPNJIQVH
QNDSZFWPQQBJ
JQCKYERAQITS
LEYZLSBIIFMD
SSEKFDXKFOYL
KTELXATAOZAV
ZTIZMOVXZYOP
WUCEZLTKMSTH
0JIYGWYUSAZG
LKFWMGQVABC J
EMHEQEAYBPFH
YMPEBHUAPIER
WDDAUWIEIYOU
EQZPOUZCYZYF
BMQJIWVQGZHPH
ASPXNEADHCZS
PARKWZNECKIT
JBLUMISDKDHZ
XPRXYIXGDUAB
KIITCQPXUNVN
UYGVKETKNQJG
XZEILNZRQELQ
THEXALLIESXA

Rotor Choice:

mm I

Valid settings found

Start Position: WRZ

Attempting To Decrypt Full Ciphertext...
THEXALLIESXAREXADVANCING
It took 7.916377317905426

minutes to brute force the ciphertext

[»

+ 4]

Ln: 32937 Col:

Figure 3: After 7 minutes the settings of the enigma machine, that the user
entered, is found. A new enigma machine is created with these settings and the
full ciphertext is decrypted, revealing the full message that the user entered.

21| Page

	Introduction
	Background
	Importance of this topic in Computer Security
	Aim
	Objectives

	Procedure
	Setup
	Coding the brute-force attack
	User input
	Decrypting user text
	Timing the brute-force attempt

	Results
	Entering text and enigma settings
	Attempts of brute-force attack
	Enigma settings cracked

	Discussion
	General Discussion
	Countermeasures
	Conclusions
	Future Work

	References
	Appendices
	Appendix A: Brute-force section
	Appendix B: User input with machine creation
	Appendix C: Time calculation
	Appendix D: Finished program
	Appendix E: Running the program

