
Brute-forcing The Enigma Cipher

Patrick Collins – 1900609@uad.ac.uk

Introduction to security – CMP110A

BSc Ethical Hacking Year 1

2019/20

Abstract

This paper consists of explaining how the Enigma Cipher encrypts text and its major
flaw which can be brute forced using this flaw with the programming language Python.

The aim of this is to show how fast outdated ciphers are brute forced with even the
smallest amount of processing power, and how a flaw in a cipher can make it totally
useless.

To brute-force the Enigma Cipher a “Crib text” is used which is a decrypted part of the
whole ciphertext. A known word in an enigma ciphertext.

In the python script, it asks the user to input their plaintext and a section of this is used
as the “Crib Text”. To encrypt the crib text and the plaintext, the user inputs the
settings of the Enigma Machine.

Once the crib text is encrypted, a brute-force algorithm is run to find the settings used.
Finally, once the settings are found, an Enigma Machine is set up to decrypt the full
ciphertext.

After the investigator brute forced the Enigma Cipher, it’s clear that with today’s
processing capabilities this cipher can be easily cracked faster than the bombe
machine used during WW2. This shows a great improvement in computing machines.

Contents

Introduction..1

Background..1

Importance of this topic in Computer Security..3

Aim..3

Objectives..3

Procedure..4

Setup...4

Coding the brute-force attack..7

User input..8

Decrypting user text..9

Timing the brute-force attempt...9

Results...9

Entering text and enigma settings..9

Attempts of brute-force attack...9

Enigma settings cracked..10

Discussion...10

General Discussion...10

Countermeasures...10

Conclusions...11

Future Work...11

References...12

Appendices..13

Appendix A: Brute-force section...13

Appendix B: User input with machine creation...14

Appendix C: Time calculation..15

Appendix D: Finished program..16

Appendix E: Running the program...19

Introduction
Background

A cipher is a method to either encrypt or decrypt information. The ciphertext is
unreadable without decrypting it first, as it is just a random set of letters or characters.
The Enigma Cipher is one method to encrypt information and is done using a machine.

The Enigma Machine was used during world war II by the German military to encrypt
communications. How the Enigma machine encrypted its plaintext was to set the
machine to a certain position. It had multiple rotors, a plugboard, a reflector and a
typewriter-style keyboard to input the text. The number of rotors can be 3 to 5. The
plugboard and reflector is how it reverses the letters, therefore, encrypting the text.

Letter reversing through the plugboard and reflector. Available at:
http://www.ellsbury.com/gne/gne-002.htm [Accessed 7 May 2020]

Back then, the cipher seemed impossible to break. However, the help of Polish
cryptographers’ previous success on cracking the old models of the Enigma gave Alan
Turing’s team a head start. The determination of the code breakers at Bletchley Park
cracked this cipher and exposed the flaw with the Enigma Cipher (Available at:
https://medium.com/lessons-from-history/how-allied-forces-cracked-enigma-code-
6f67d3edb65c [Accessed 7 May 2020]).

One of its flaws is that knowing a part of the ciphertext can make it vulnerable to brute-
force attacks, which is what the bombe machine did (Available at:
https://www.cryptomuseum.com/crypto/bombe/ [Accessed 7 May 2020]). For example,
the daily weather reports always started with “Weather” (German: “Wetter”) making it
easier to crack. The same concept can be used for this project, using a part of the
decrypted ciphertext to reveal the full ciphertext.

1 | P a g e

https://www.cryptomuseum.com/crypto/bombe/
https://medium.com/lessons-from-history/how-allied-forces-cracked-enigma-code-6f67d3edb65c
https://medium.com/lessons-from-history/how-allied-forces-cracked-enigma-code-6f67d3edb65c
http://www.ellsbury.com/gne/gne-002.htm

Bombe machine, By Unknown author - Set of wartime photos of GC&CS at Bletchley
Park, Public Domain, https://commons.wikimedia.org/w/index.php?curid=72819587

[Accessed 7 May 2020]

It took around 20 minutes for each Rotor Setting (Alexander c 1945, ch 1 para 44.
Available at: http://www.ellsbury.com/gne/gne-012.htm [Accessed 7 May 2020]) . However,
Alan’s team needed to get the state of Enigma machine before it got changed the next
day which made every minute count. This project aims to get through a Rotor in much
less time to show the speed of today’s processors, even a low-priced one.

Raspberry Pi 3 Model B Processor

Available at: http://www.datasheetcafe.com/bcm2837-datasheet-quad-core-processor-

broadcom/ [Accessed May 7, 2020]

2 | P a g e

http://www.datasheetcafe.com/bcm2837-datasheet-quad-core-processor-broadcom/
http://www.datasheetcafe.com/bcm2837-datasheet-quad-core-processor-broadcom/
http://www.ellsbury.com/gne/gne-012.htm
https://commons.wikimedia.org/w/index.php?curid=72819587

Importance of this topic in Computer Security

Data needs to be protected. Privacy is important, especially in the ever-growing
and advancing cyber world. Cybercriminals can use this information to make
money, selling it off. This is one reason why Encryption is a very important
topic in Computer Security, as it is the forefront of data privacy and security.

Encryption protects the user’s information, and there are various methods to do
so. From the Enigma Cipher to the Advanced Encryption Standard (AES) we
use today, ways to secure information is improving. The issue is, how long will
it take to “crack” the encryption, therefore making it obsolete, and a new
method is needed?

Aim

The aims of this project will be:

 To replicate what the bombe device did, brute-forcing the enigma cipher,
in modern-day programming languages.

 Attempt to show how far computers have come with the technology
used in this project to brute-force the Enigma.

 Reducing the average time of 20 minutes for each Rotor.
 Letting the user encrypt their plaintext, then attempt to brute-force it and

display the decrypted message to the user.

Objectives

 Attempt to code an enigma machine or use an existing Enigma library.
 Use a cheap device, but with reasonable computing power.
 Speeding up the process depends on the hardware, and how well the brute-force

attack functions.
 In the code a user input could be requested, this will store the plaintext. This

plaintext will be passed into whatever method of the enigma machine.

3 | P a g e

Procedure
Setup

Hardware

For meeting the objective of reasonable and cheap computing power, a Raspberry Pi 3
Model B is used. This hardware costs around £35 (Raspberry Pi Foundation approved
retailer, https://thepihut.com/products/raspberry-pi-3-model-b?src=raspberrypi. See figure 1).
This will show one part of advancement in technology, as the Bombe was a large
machine whereas a Raspberry Pi is the size of a palm.

Figure 1: Raspberry Pi 3 Model B

Accompanying the Pi, a micro SD card is needed. This is needed for the raspberry pi’s
operating system.

Software

A Python 3 Enigma library is used to recreate the Enigma Machine in code, meeting
one of the outlined objectives. (Author: Brian Neal, https://pypi.org/project/py-enigma/

See figure 2). This great resource is very helpful in simulating the enigma machine to
brute-force it. Therefore, the programming language to be used is python 3. Installing
this library will come later.

4 | P a g e

https://pypi.org/project/py-enigma/
https://thepihut.com/products/raspberry-pi-3-model-b?src=raspberrypi

Figure 2: Py-enigma library

On the Raspberry Pi, the Raspbian operating system is to be used. To image the
Raspbian OS to your SD card, simply use the Foundations own Raspberry Pi imager
(Available at: https://www.raspberrypi.org/downloads/ Figure 3) Select and download the
imager. Once it is downloaded, run the application and install the imager (See figure 4).

In the imager itself, selecting “Choose OS” will show the Raspbian OS (See figure 5&6).
Setup is almost complete, now insert the SD card into the raspberry pi and boot it up.
Once booted up, open the terminal to install the final software.

Figure 3: Raspberry Pi imager download link

5 | P a g e

https://www.raspberrypi.org/downloads/

Figure 4: Raspberry Pi imager setup menu

Figure 5: Raspbian OS in menu

6 | P a g e

Figure 6: Raspberry Pi Imager

Installing Py-Enigma is very simple from the command line. The command “pip install
py-enigma” (See figure 7) will install the python library and enable its use in python
programs.

Figure 7: Installing py-enigma

Coding the brute-force attack
To code this part of the program, a tutorial by GCHQ and The Raspberry Pi Foundation
(Tutorial available at: https://projects.raspberrypi.org/en/projects/octapi-brute-force-enigma/7) is
used for the brute-forcing the enigma.

In Appendix A, it shows a finished brute-force attack coded using the tutorial and py-
enigma. You create the enigma machine by including the py-enigma class and creating
the machine (See figure 8).

7 | P a g e

https://projects.raspberrypi.org/en/projects/octapi-brute-force-enigma/7
https://www.raspberrypi.org/
https://www.gchq.gov.uk/

Figure 8: Machine creation

For the moment the Reflector is default to B, as is the ring and plugboard settings. What
this section does (See Appendix A) is selects a rotor (From the possible rotor list), start
position (Using the alphabet and 3 for loops) and then sets the enigma machine to this
setting using “machine.set_display(start_position)”.

Furthermore, it attempts to decrypt the crib’s ciphertext. If the decrypted crib ciphertext
is the same as the cribtext plaintext then the correct setting is found which returns the
settings for the user. After the brute-force attack has been coded, the next
objectives/aims are to be focused on.

User input

However, only part of this project’s aims will have been met so far. One of its aims is to
let the user choose what to encrypt, with the settings they desire. To do this, input
statements are needed. The user inputs their plaintext and then the Enigma Settings to
encrypt it (See figure 9). However, to encrypt what the user has entered a new enigma
machine needs to be created with these settings. The settings that the user chooses will
be the brute-force attack’s goal to find. (Also see appendix B for more information).

Figure 9: User Input and machine creation

8 | P a g e

Decrypting user text
With the settings found after the brute-force attempt, it’s now possible to decrypt the full
message that the user entered.

To decrypt the full message, the state of the enigma machine needs to be set to the
valid settings found. Once the state has been set to the correct position the full
message will be decrypted and displayed to the user. (See Appendix D, figure 3).

After the full message has been decrypted the brute-force attack has been successful.
Now it’s just timing how long the attack takes.

Timing the brute-force attempt

To time the brute-force attempt, time.time() can be used. You will see this in Figure 9
with “start = time.time()”. After the user’s plaintext is encrypted the brute-force attempt
begins, which is why the time must start here. Once the settings are found, the time
stops with “end = time.time()”.

Converting the time to minutes is done by subtracting the two and then dividing by 60
(See figure 10 for the calculation). This will give an accurate and understandable
timestamp of how long the program took to brute-force their enigma settings.

Figure 10: calculation of seconds to minutes.

Results

The program is complete, now it’s time to run it. Running the program, the user decided
to choose a rotor position not too far down the list of possible rotors. You should do the
same for testing. For example, I II III.

Entering text and enigma settings

The user entered “THEXALLIESXAREXADVANCING” and got correctly split into a
Cribtext displaying it to the user. Next, a Start Position “WRZ” is entered with Rotor
Position “I II IV” which is the second possible rotor in the list. (See Appendix E, figure 1).

Attempts of brute-force attack

Letting the program run and attempt to crack the settings entered, the lines got up to the
2000s. Meaning this is 2000 attempts so far of the one Rotor Position and multiple Start
Positions. (See Appendix E, figure 2).

9 | P a g e

Enigma settings cracked

Once ended, the program had an incredible 32,937 attempts. This is just the second
Rotor in the list. Time calculation also worked showing it took 7 minutes for the two
Rotors. Finally, the full text that the user entered at the beginning is successfully
decrypted. This result can be seen in Appendix E, figure 3.

Discussion
General Discussion

The most significant result of this project is the time of the brute-force attack. Back with
Turing’s bombe it took 20 minutes for each rotor. In the example shown in Appendix E,
2 rotors had to be checked before the settings were found. In WW2 this would have
taken around 40 minutes.

However, with the speed of today’s single processor, it took 7 minutes. Significant time
reduction. Also, keep in mind this is also done on the miniature raspberry pi in
comparison to the size of the bombe used in WW2. This meets two of the aims,
showing the advancement in technology and reducing time of the brute-force attack on
the enigma cipher. The Raspberry Pi minicomputer can do what the bombe did, but
better and faster despite being smaller.

After the investigator successfully run the brute-force attack, another project aim is met.
Replicating what the bombe device did seemed like a big task for this project, and the
steps needed to take not so clear. Now, the program successfully imitates what the
bombe device did. Also, with the help of py-enigma it has been possible to do it on a
modern-day programming language.

Finally, an important aim to have user interaction is achieved. The user can
enter any plaintext they want. Even further, the user can set some settings of
the enigma machine to their liking, which was out of this aim’s scope, improving
the aim further.

Countermeasures

To counter the flaw of the enigma cipher, the TypeX was used by the British. This
meant the methods used to brute-force the enigma cipher cannot be used on this
improved machine. It fixed the flaws of the enigma making it a more secure
communication method. (Available at: https://www.cryptomuseum.com/crypto/uk/typex/

[Accessed May 8, 2020)

10 | P a g e

https://www.cryptomuseum.com/crypto/uk/typex/

Conclusions

In conclusion, all of the project aims have been achieved. Some aims taking the project
beyond expectation. This project is a good insight into cryptography and brute-forcing
ciphers. Finally, a great experience to see how far computers have evolved since WW2
with the help of Alan Turing and his proposition of “Turing Machine”(Available at:

http://www.turingarchive.org/viewer/?id=466&title=01d [Accessed May 8, 2020]).

Future Work

If the project had more time and resources, a bigger scope could be achieved. Such as
an addition to the brute-force section for the Reflector, Plugboard and Ring Settings.
This would allow the user to fully enter the settings of the enigma machine to their liking.

However, doing so would increase the time significantly. To combat this, 8 raspberry
pi’s would be needed. Just as more bombe machines needed to be created to decrypt
faster.

11 | P a g e

http://www.turingarchive.org/viewer/?id=466&title=01d

References
(n.d.). Retrieved May 7, 2020, from https://www.cryptomuseum.com/crypto/bombe/

(n.d.). Retrieved May 7, 2020, from https://medium.com/lessons-from-history/how-allied-forces-

cracked-enigma-code-6f67d3edb65c

c, A. (n.d.). Reflector drawing. Retrieved May 7, 2020, from http://www.ellsbury.com/gne/gne-002.htm

c, A. (n.d.). Time For One Rotor. Retrieved May 7, 2020, from http://www.ellsbury.com/gne/gne-

012.htm

GCHQ, R. P. (22, November 2017). Enigma Brute Force Tutorial. Retrieved May 7, 2020, from

https://projects.raspberrypi.org/en/projects/octapi-brute-force-enigma/7

Image Of Bombe Machine. (n.d.). Retrieved May 7, 2020, from

https://commons.wikimedia.org/w/index.php?curid=72819587

Lycett, A. (n.d.). Retrieved May 5, 2020, from

http://www.bbc.co.uk/history/worldwars/wwtwo/enigma_01.shtml

Raspberry Pi 3. (n.d.). Retrieved May 7, 2020, from https://thepihut.com/products/raspberry-pi-3-

model-b?src=raspberrypi

Raspberry Pi 3 Model B Processor. (n.d.). Retrieved May 7, 2020, from

http://www.datasheetcafe.com/bcm2837-datasheet-quad-core-processor-broadcom/

Raspberry Pi Imager . (n.d.). Retrieved May 8, 2020, from https://www.raspberrypi.org/downloads/

Turing, A. M. (n.d.). Turing Machine. Retrieved May 8, 2020, from

http://www.turingarchive.org/viewer/?id=466&title=01d

TypeX. (n.d.). Retrieved May 8, 2020, from https://www.cryptomuseum.com/crypto/uk/typex/

12 | P a g e

Appendices
Appendix A: Brute-force section

13 | P a g e

Appendix B: User input with machine creation

Figure 1: User’s text is split into 2 for the cribtext. Seen by “usertext[0:len(usertext)//2]”.
This will be used for the brute-force attack.

14 | P a g e

Appendix C: Time calculation

Figure 1: Importing time to use the time.time() function in order to begin calculating
length of attack.

Figure 2: Start of time counter- after user input and machine creation finished

Figure 3: End of time counter- once attack has found valid settings counting the time
stops. Then a calculation converts the time from seconds to minutes.

15 | P a g e

Appendix D: Finished program

Figure 1: User input section of the program

16 | P a g e

Figure 2: brute-force section of the program

17 | P a g e

Figure 3: Paying attention to “checking if decrypted version is the same as the crib text”,
the enigma machine state is set to the valid settings found. Then the full ciphertext that

the user entered is decrypted displaying it in plaintext.

18 | P a g e

Appendix E: Running the program

Figure 1: User entering text to encrypt and choosing settings of the enigma machine

19 | P a g e

Figure 2: The attempts to decrypt the Cribs Ciphertext and find valid settings

20 | P a g e

Figure 3: After 7 minutes the settings of the enigma machine, that the user
entered, is found. A new enigma machine is created with these settings and the

full ciphertext is decrypted, revealing the full message that the user entered.

21 | P a g e

	Introduction
	Background
	Importance of this topic in Computer Security
	Aim
	Objectives

	Procedure
	Setup
	Coding the brute-force attack
	User input
	Decrypting user text
	Timing the brute-force attempt

	Results
	Entering text and enigma settings
	Attempts of brute-force attack
	Enigma settings cracked

	Discussion
	General Discussion
	Countermeasures
	Conclusions
	Future Work

	References
	Appendices
	Appendix A: Brute-force section
	Appendix B: User input with machine creation
	Appendix C: Time calculation
	Appendix D: Finished program
	Appendix E: Running the program

